The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Thoas Fioretos

Thoas Fioretos

Research team manager

Thoas Fioretos

Enhanced Optical Biosensing by Aerotaxy Ga(As)P Nanowire Platforms Suitable for Scalable Production

Author

  • Julia Valderas Gutiérrez
  • Rubina Davtyan
  • Sudhakar Sivakumar
  • Nicklas Anttu
  • Yuyu Li
  • Patrick Flatt
  • Jae Yen Shin
  • Christelle Prinz
  • Fredrik Höök
  • Thoas Fioretos
  • Martin H. Magnusson
  • Heiner Linke

Summary, in English

Sensitive detection of low-abundance biomolecules is central for diagnostic applications. Semiconductor nanowires can be designed to enhance the fluorescence signal from surface-bound molecules, prospectively improving the limit of optical detection. However, to achieve the desired control of physical dimensions and material properties, one currently uses relatively expensive substrates and slow epitaxy techniques. An alternative approach is aerotaxy, a high-throughput and substrate-free production technique for high-quality semiconductor nanowires. Here, we compare the optical sensing performance of custom-grown aerotaxy-produced Ga(As)P nanowires vertically aligned on a polymer substrate to GaP nanowires batch-produced by epitaxy on GaP substrates. We find that signal enhancement by individual aerotaxy nanowires is comparable to that from epitaxy nanowires and present evidence of single-molecule detection. Platforms based on both types of nanowires show substantially higher normalized-to-blank signal intensity than planar glass surfaces, with the epitaxy platforms performing somewhat better, owing to a higher density of nanowires. With further optimization, aerotaxy nanowires thus offer a pathway to scalable, low-cost production of highly sensitive nanowire-based platforms for optical biosensing applications.

Department/s

  • Solid State Physics
  • NanoLund: Centre for Nanoscience
  • Division of Clinical Genetics

Publishing year

2022-07-01

Language

English

Publication/Series

ACS Applied Nano Materials

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Condensed Matter Physics

Keywords

  • semiconductor nanowires
  • aerotaxy
  • scalable production
  • biosensing
  • lightguiding

Status

Published

ISBN/ISSN/Other

  • ISSN: 2574-0970