The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Thoas Fioretos

Thoas Fioretos

Research team manager

Thoas Fioretos

The t(X;7)(q22;q34) in paediatric T-cell acute lymphoblastic leukaemia results in overexpression of the insulin receptor substrate 4 gene through illegitimate recombination with the T-cell receptor beta locus.

Author

  • Kristina Karrman
  • Eigil Kjeldsen
  • Carin Lassen
  • Margareth Isaksson
  • Josef Davidsson
  • Anna Andersson
  • Henrik Hasle
  • Thoas Fioretos
  • Bertil Johansson

Summary, in English

Summary The t(X;7)(q22;q34), a translocation not previously reported in a neoplastic disorder, was identified and molecularly characterised in a paediatric T-cell acute lymphoblastic leukaemia (T-ALL), subsequently shown also to harbour a deletion of 6q, a STIL/TAL1 fusion and an activating NOTCH1 mutation. The t(X;7) was further investigated using fluorescence in situ hybridisation (FISH), real-time quantitative polymerase chain reaction (RQ-PCR) and Western blot analyses. FISH revealed a breakpoint at the T-cell receptor beta locus at 7q34 and mapped the corresponding breakpoint to Xq22.3. The latter region contains only two known genes, namely insulin receptor substrate 4 (IRS4) and collagen, type IV, alpha 5 (COL4A5), the expressions of which were analysed by the use of RQ-PCR. COL4A5 was not differentially expressed in the t(X;7)-positive sample compared to five T-ALL controls. However, a marked, 1000-fold overexpression of IRS4 was identified. Western blot analysis with a monoclonal antibody against IRS4 showed overexpression also at the protein level. Considering that forced expression of several members of the IRS family has been shown to result in increased cell proliferation, for example in haematopoietic cells, we hypothesise that the IRS4 up-regulation in T-ALL is pathogenetically important as a mitogenic stimulus.

Department/s

  • Division of Clinical Genetics

Publishing year

2009

Language

English

Pages

546-551

Publication/Series

British Journal of Haematology

Volume

144

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Hematology

Status

Published

ISBN/ISSN/Other

  • ISSN: 0007-1048