Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Serial digital autoradiography with a silicon strip detector as a high resolution imaging modality for TRT Dosimetry

Author:
  • Anders Örbom
  • Magnus Dahlbom
  • Tove Olafsen
  • Anna M. Wu
  • Sven-Erik Strand
Publishing year: 2007
Language: English
Pages: 4054-4056
Publication/Series: 2007 IEEE Nuclear Science Symposium Conference Record, vols 1-11
Document type: Conference paper
Publisher: IEEE--Institute of Electrical and Electronics Engineers Inc.

Abstract english

This study aims to investigate the possibility of implementing serial autoradiography using a silicon strip detector as an imaging modality in pre-clinical radionuclide therapy research, in order to study the effect of non-uniform uptake on absorbed dose distribution and biological response. Tumor tissues expressing CD20 (B-cell lymphoma) or carcinoembryonic antigen (CEA; colorectal cancer) were excised from animals injected with I-131-labelled anti-CD20 or anti-CEA antibodies and antibody fragments. The tumors were cryosectioned at 100 mu m and imaged using a real-time silicon- strip imager with a pixel-size of 50 mu m. Software was developed to correct for image artifacts and to realign the image sections into a volume by a two-step process with least square error and mutual information registration measures. The realigned volumes were convolved with beta dose point kernels to provide the dose rate distribution for I-131 and Y-90 at the time of sacrifice. Using these volumes, comparisons can be made between uptake and penetration of different antibodies and the dose rate uniformity of different radionuclides. Simulations performed using measured I-131 and I-125 energy spectra showed that energy separation with less than 5% error could be performed with 100 counts per pixel. Imaging and subsequent separation of a sample containing both I-131 and I-125 proved the possibility of simultaneous imaging of two targeting agents in the same tissue. Thinner tissue sections were also set aside and successfully used for H&E staining and immunohistochemistry to enable future comparison of uptake and dose rate in different cell-type populations in the tissue. This method successfully provides high-resolution activity and dose rate volumes and has potential for multi-labeling imaging and co-registration with histology. As a complimentary imaging modality it can aid in investigating the effect of non-uniform uptake. Optimization is still needed in both the sectioning protocol and realignment software.

Keywords

  • Radiology, Nuclear Medicine and Medical Imaging

Other

IEEE Nuclear Science Symposium/Medical Imaging Conference
Published
  • ISSN: 1082-3654
  • ISBN: 978-1-4244-0922-8
Sven-Erik Strand
E-mail: sven-erik [dot] strand [at] med [dot] lu [dot] se

Project manager

Systemic Radiation Therapy Group

32

Professor emeritus

Medical Radiation Physics, Lund

32