Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Wavelet-based method for noise characterization and rejection in high-performance liquid chromatography coupled to mass spectrometry

Author:
  • Salvatore Cappadona
  • Fredrik Levander
  • Maria Bentz
  • Peter James
  • Sergio Cerutti
  • Linda Pattini
Publishing year: 2008
Language: English
Pages: 4960-4968
Publication/Series: Analytical Chemistry
Volume: 80
Issue: 13
Document type: Journal article
Publisher: The American Chemical Society

Abstract english

We present a new method for rejecting noise from HPLC-MS data sets. The algorithm reveals peptides at low concentrations by minimizing both the chemical and the random noise. The goal is reached through a systematic approach to characterize and remove the background. The data are represented as two-dimensional maps, in order to optimally exploit the complementary dimensions of separation of the peptides offered by the LC-MS technique. The virtual chromatograms, reconstructed from the spectrographic data, have proved to be more suitable to characterize the noise than the raw mass spectra. By means of wavelet analysis, it was possible to access both the chemical and the random noise, at different scales of the decomposition. The novel approach has proved to efficiently distinguish signal from noise and to selectively reject the background while preserving low-abundance peptides.

Keywords

  • Analytical Chemistry

Other

Published
  • ISSN: 1520-6882
Peter James
E-mail: peter [dot] james [at] immun [dot] lth [dot] se

Professor

Department of Immunotechnology

+46 46 222 14 96

+46 70 247 79 60

MV406411E1

90