The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Carl Borrebaeck

Carl Borrebaeck

Professor

Carl Borrebaeck

Synergistic augmentation of CD40-mediated activation of antigen-presenting cells by amphiphilic poly(γ-glutamic acid) nanoparticles.

Author

  • Sissela Broos
  • Linda C Sandin
  • Jenny Apel
  • Thomas H Tötterman
  • Takami Akagi
  • Mitsuru Akashi
  • Carl Borrebaeck
  • Peter Ellmark
  • Malin Lindstedt

Summary, in English

Agonistic anti-CD40 monoclonal antibodies (mAbs) hold great potential for cancer immunotherapy. However, systemic administration of anti-CD40 mAbs can be associated with severe side effects, such as cytokine release syndrome and liver damage. With the aim to increase the immunostimulatory potency as well as to achieve a local drug retention of anti-CD40 mAbs, we linked an agonistic mAb to immune activating amphiphilic poly(γ-glutamic acid) nanoparticles (γ-PGA NPs). We demonstrate that adsorption of anti-CD40 mAb to γ-PGA NPs (anti-CD40-NPs) improved the stimulatory capacity of the CD40 agonist, resulting in upregulation of costimulatory CD80 and CD86 on antigen-presenting cells, as well as IL-12 secretion. Interestingly, anti-CD40-NPs induced strong synergistic proliferative effects in B cells, possibly resulting from a higher degree of CD40 multimerization, enabled by display of multiple anti-CD40 mAbs on the NPs. In addition, local treatment with anti-CD40-NPs, compared to only soluble CD40 agonist, resulted in a significant reduction in serum levels of IL-6, IL-10, IL-12 and TNF-α in a bladder cancer model. Taken together, our results suggest that anti-CD40-NPs are capable of synergistically enhancing the immunostimulatory effect induced by the CD40 agonist, as well as minimizing adverse side effects associated with systemic cytokine release. This concept of nanomedicine could play an important role in localized immunotherapy of cancer.

Department/s

  • Department of Immunotechnology
  • BioCARE: Biomarkers in Cancer Medicine improving Health Care, Education and Innovation

Publishing year

2012

Language

English

Pages

6230-6239

Publication/Series

Biomaterials

Volume

33

Issue

26

Document type

Journal article

Publisher

Elsevier

Topic

  • Bioengineering Equipment

Keywords

  • Cell
  • proliferation
  • Protein adsorption
  • Immunostimulation
  • Drug delivery
  • Nanoparticle

Status

Published

ISBN/ISSN/Other

  • ISSN: 1878-5905