The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Carl Borrebaeck

Carl Borrebaeck

Professor

Carl Borrebaeck

Germinal Centers Regulate Human Th2 Development1

Author

  • Bengt Johansson-Lindbom
  • Sigurdur Ingvarsson
  • Carl Borrebaeck

Summary, in English

In the present study we demonstrate that all CD4+ T cells in human tonsil expressing the Th2-selective receptor chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) also 1) express high levels of CXCR5, and 2) display a transitional CD45RA/RO phenotype and consistently do not produce significant amounts of cytokines when immediately analyzed ex vivo. Hence, they represent precursors of Th2 effector cells, a conclusion confirmed by their robust production of IL-4, IL-5, and IL-13, but not IFN-{gamma}, after in vitro activation. CD4+ T cells, which express only intermediate levels of CXCR5, instead develop into IFN-{gamma}-producing cells under identical culture conditions, thus establishing a correlation between relative levels of CXCR5 expression and the acquired cytokine profile. Because CXCR5 is critically involved in follicular localization, the results suggest that these CRTH2+ Th2 cells preferentially develop their cytokine-producing phenotype within germinal centers (GCs), whereas extrafollicular differentiation instead promotes Th1 development. In support for this proposal, we show that T cells with an intermediate expression of CXCR5 can be forced to also produce IL-4 and IL-13 if cultured with allogenic GC B cells. Finally, we demonstrate that the previously described CD57+ GC T cells also express high levels of CXCR5 but instead of comprising a Th2 precursor, they represent anergized T cells. Taken together, these data suggest that GCs and B cells regulate CD4+ T cell differentiation in a finely tuned fashion, either by promoting differentiation of Th2 cells, which apparently leave the lymphoid tissue before evolving a cytokine-producing phenotype, or by furnishing T cell unresponsiveness.

Department/s

  • Department of Immunotechnology

Publishing year

2003

Language

English

Pages

1657-1666

Publication/Series

Journal of Immunology

Volume

171

Issue

4

Document type

Journal article

Publisher

American Association of Immunologists

Topic

  • Immunology in the medical area

Status

Published

ISBN/ISSN/Other

  • ISSN: 1550-6606