The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Åke Borg

Åke Borg

Principal investigator

Åke Borg

Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia-A comparative study of four differently designed, high resolution microarray platforms.

Author

  • Rebeqa Gunnarsson
  • Johan Staaf
  • Mattias Jansson
  • Anne Marie Ottesen
  • Hanna Göransson
  • Ulrika Liljedahl
  • Ulrik Ralfkiær
  • Mahmoud Mansouri
  • Anne Mette Buhl
  • Karin Ekström Smedby
  • Henrik Hjalgrim
  • Ann-Christine Syvänen
  • Åke Borg
  • Anders Isaksson
  • Jesper Jurlander
  • Gunnar Juliusson
  • Richard Rosenquist

Summary, in English

Screening for gene copy-number alterations (CNAs) has improved by applying genome-wide microarrays, where SNP arrays also allow analysis of loss of heterozygozity (LOH). We here analyzed 10 chronic lymphocytic leukemia (CLL) samples using four different high-resolution platforms: BAC arrays (32K), oligonucleotide arrays (185K, Agilent), and two SNP arrays (250K, Affymetrix and 317K, Illumina). Cross-platform comparison revealed 29 concordantly detected CNAs, including known recurrent alterations, which confirmed that all platforms are powerful tools when screening for large aberrations. However, detection of 32 additional regions present in 2-3 platforms illustrated a discrepancy in detection of small CNAs, which often involved reported copy-number variations. LOH analysis using dChip revealed concordance of mainly large regions, but showed numerous, small nonoverlapping regions and LOH escaping detection. Evaluation of baseline variation and copy-number ratio response showed the best performance for the Agilent platform and confirmed the robustness of BAC arrays. Accordingly, these platforms demonstrated a higher degree of platform-specific CNAs. The SNP arrays displayed higher technical variation, although this was compensated by high density of elements. Affymetrix detected a higher degree of CNAs compared to Illumina, while the latter showed a lower noise level and higher detection rate in the LOH analysis. Large-scale studies of genomic aberrations are now feasible, but new tools for LOH analysis are requested.

Department/s

  • Stem Cell Center
  • Breastcancer-genetics

Publishing year

2008

Language

English

Pages

697-711

Publication/Series

Genes, Chromosomes and Cancer

Volume

47

Issue

8

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Cancer and Oncology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1045-2257