The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Åke Borg

Åke Borg

Principal investigator

Åke Borg

Mutual Exclusivity Analysis of Genetic and Epigenetic Drivers in Melanoma Identifies a Link Between p14(ARF) and RAR beta Signaling

Author

  • Christina Dahl
  • Claus Christensen
  • Göran B Jönsson
  • Anders Lorentzen
  • Mette Louise Skjodt
  • Åke Borg
  • Graham Pawelec
  • Per Guldberg

Summary, in English

Melanoma genomes contain thousands of alterations including: mutations, copy number alterations, structural aberrations, and methylation changes. The bulk of this variation is stochastic and functionally neutral, with only a small minority representing "drivers" that contribute to the genesis and maintenance of tumors. Drivers are often directly or inversely correlated across tumors, reflecting the molecular and regulatory signaling pathways in which they operate. Here, a profile of genetic and epigenetic drivers in 110 human melanoma cell lines was generated and searched for non-random distribution patterns. Statistically significant mutual exclusivity was revealed among components of each of the p16(INK4A)-CDK4-RB, RAS-RAF-MEK-ERK and PI3K-AKT signaling pathways. In addition, an inverse correlation was observed between promoter hypermethylation of retinoic acid receptor beta (RARB) and CDKN2A alterations affecting p14(ARF) (P < 0.0001), suggesting a functional link between RAR beta signaling and the melanoma-suppressive activities of p14(ARF). Mechanistically, all-trans retinoic acid (ATRA) treatment increased the expression of p14(ARF) in primary human melanocytes and the steady-state levels of p14(ARF) in these cells were shown to be regulated via RAR beta. Furthermore, the ability of ATRA to induce senescence is reduced in p14(ARF)-depleted melanocytes, and we provide proof-of-concept that ATRA can induce irreversible growth arrest in melanoma cells with an intact RARb-p14(ARF) signaling axis, independent of p16(INK4A) and p53 status. Implications: These data highlight the power of mutual exclusivity analysis of cancer drivers to unravel molecular pathways and establish a previously unrecognized cross-talk between RAR beta and p14(ARF) with potential implications for melanoma treatment.

Department/s

  • Breastcancer-genetics
  • BioCARE: Biomarkers in Cancer Medicine improving Health Care, Education and Innovation

Publishing year

2013

Language

English

Pages

1166-1178

Publication/Series

Molecular Cancer Research

Volume

11

Issue

10

Document type

Journal article

Publisher

American Association for Cancer Research

Topic

  • Cancer and Oncology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1557-3125