The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Åke Borg

Åke Borg

Principal investigator

Åke Borg

Detection of submicroscopic constitutional chromosome aberrations in clinical diagnostics: a validation of the practical performance of different array platforms

Author

  • Zhong-Fa Zhang
  • Claudia Ruivenkamp
  • Johan Staaf
  • Hongbo Zhu
  • Michela Barbaro
  • David Petillo
  • Sok Kean Khoo
  • Åke Borg
  • Yao-Shan Fan
  • Jacqueline Schoumans

Summary, in English

For several decades etiological diagnosis of patients with idiopathic mental retardation (MR) and multiple congenital anomalies (MCA) has relied on chromosome analysis by karyotyping. Conventional karyotyping allows a genome-wide detection of chromosomal abnormalities but has a limited resolution. Recently, array-based comparative genomic hybridization (array CGH) technologies have been developed to evaluate DNA copy-number alterations across the whole-genome at a much higher resolution. It has proven to be an effective tool for detection of submicroscopic chromosome abnormalities causing congenital disorders and has recently been adopted for clinical applications. Here, we investigated four high-density array platforms with a theoretical resolution <= 100 kb: 33K tiling path BAC array, 500K Affymetrix SNP array, 385K NimbleGen oligonucleotide array and 244K Agilent oligonucleotide array for their robustness and implementation in our diagnostic setting. We evaluated the practical performance based on the detection of 10 previously characterized abnormalities whose size ranged from 100 kb to 3 Mb. Furthermore, array data analysis was performed using four computer programs developed for each corresponding platform to test their effective ability of reliable copy-number detection and their user-friendliness. All tested platforms provided sensitive performances, but our experience showed that accurate and user-friendly computer programs are of crucial importance for reliable copy-number detection.

Department/s

  • Breastcancer-genetics

Publishing year

2008

Language

English

Pages

786-792

Publication/Series

European Journal of Human Genetics

Volume

16

Issue

7

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Medical Genetics

Keywords

  • submicroscopic chromosome aberrations
  • array platform comparison
  • copy-number detection

Status

Published

ISBN/ISSN/Other

  • ISSN: 1476-5438